Update copyright header. Normalize line endings to LF.
This commit is contained in:
@@ -1,274 +1,274 @@
|
||||
#region Copyright & License Information
|
||||
/*
|
||||
* Copyright 2007-2010 The OpenRA Developers (see AUTHORS)
|
||||
* This file is part of OpenRA, which is free software. It is made
|
||||
* available to you under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation. For more information,
|
||||
* see LICENSE.
|
||||
*
|
||||
* This file is based on the blast routines (version 1.1 by Mark Adler)
|
||||
* included in zlib/contrib
|
||||
*/
|
||||
#endregion
|
||||
|
||||
using System;
|
||||
using System.IO;
|
||||
|
||||
namespace OpenRA.FileFormats
|
||||
{
|
||||
public static class Blast
|
||||
{
|
||||
public static readonly int MAXBITS = 13; // maximum code length
|
||||
public static readonly int MAXWIN = 4096; // maximum window size
|
||||
|
||||
static byte[] litlen = new byte[] {
|
||||
11, 124, 8, 7, 28, 7, 188, 13, 76, 4,
|
||||
10, 8, 12, 10, 12, 10, 8, 23, 8, 9,
|
||||
7, 6, 7, 8, 7, 6, 55, 8, 23, 24,
|
||||
12, 11, 7, 9, 11, 12, 6, 7, 22, 5,
|
||||
7, 24, 6, 11, 9, 6, 7, 22, 7, 11,
|
||||
38, 7, 9, 8, 25, 11, 8, 11, 9, 12,
|
||||
8, 12, 5, 38, 5, 38, 5, 11, 7, 5,
|
||||
6, 21, 6, 10, 53, 8, 7, 24, 10, 27,
|
||||
44, 253, 253, 253, 252, 252, 252, 13, 12, 45,
|
||||
12, 45, 12, 61, 12, 45, 44, 173
|
||||
};
|
||||
|
||||
// bit lengths of length codes 0..15
|
||||
static byte[] lenlen = new byte[] { 2, 35, 36, 53, 38, 23 };
|
||||
|
||||
// bit lengths of distance codes 0..63
|
||||
static byte[] distlen = new byte[] { 2, 20, 53, 230, 247, 151, 248 };
|
||||
|
||||
// base for length codes
|
||||
static short[] lengthbase = new short[] {
|
||||
3, 2, 4, 5, 6, 7, 8, 9, 10, 12,
|
||||
16, 24, 40, 72, 136, 264
|
||||
};
|
||||
|
||||
// extra bits for length codes
|
||||
static byte[] extra = new byte[] {
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 1, 2,
|
||||
3, 4, 5, 6, 7, 8
|
||||
};
|
||||
|
||||
static Huffman litcode = new Huffman(litlen, litlen.Length, 256);
|
||||
static Huffman lencode = new Huffman(lenlen, lenlen.Length, 16);
|
||||
static Huffman distcode = new Huffman(distlen, distlen.Length, 64);
|
||||
|
||||
// Decode PKWare Compression Library stream.
|
||||
public static byte[] Decompress(byte[] src)
|
||||
{
|
||||
BitReader br = new BitReader(src);
|
||||
|
||||
// Are literals coded?
|
||||
int coded = br.ReadBits(8);
|
||||
|
||||
if (coded < 0 || coded > 1)
|
||||
throw new NotImplementedException("Invalid datastream");
|
||||
bool EncodedLiterals = (coded == 1);
|
||||
|
||||
// log2(dictionary size) - 6
|
||||
int dict = br.ReadBits(8);
|
||||
if (dict < 4 || dict > 6)
|
||||
throw new InvalidDataException("Invalid dictionary size");
|
||||
|
||||
// output state
|
||||
ushort next = 0; // index of next write location in out[]
|
||||
bool first = true; // true to check distances (for first 4K)
|
||||
byte[] outBuffer = new byte[MAXWIN]; // output buffer and sliding window
|
||||
var ms = new MemoryStream();
|
||||
|
||||
// decode literals and length/distance pairs
|
||||
do
|
||||
{
|
||||
// length/distance pair
|
||||
if (br.ReadBits(1) == 1)
|
||||
{
|
||||
// Length
|
||||
int symbol = Decode(lencode, br);
|
||||
int len = lengthbase[symbol] + br.ReadBits(extra[symbol]);
|
||||
if (len == 519) // Magic number for "done"
|
||||
{
|
||||
for (int i = 0; i < next; i++)
|
||||
ms.WriteByte(outBuffer[i]);
|
||||
break;
|
||||
}
|
||||
|
||||
// Distance
|
||||
symbol = len == 2 ? 2 : dict;
|
||||
int dist = Decode(distcode, br) << symbol;
|
||||
dist += br.ReadBits(symbol);
|
||||
dist++;
|
||||
|
||||
if (first && dist > next)
|
||||
throw new InvalidDataException("Attempt to jump before data");
|
||||
|
||||
// copy length bytes from distance bytes back
|
||||
do
|
||||
{
|
||||
int dest = next;
|
||||
int source = dest - dist;
|
||||
|
||||
int copy = MAXWIN;
|
||||
if (next < dist)
|
||||
{
|
||||
source += copy;
|
||||
copy = dist;
|
||||
}
|
||||
|
||||
copy -= next;
|
||||
if (copy > len)
|
||||
copy = len;
|
||||
|
||||
len -= copy;
|
||||
next += (ushort)copy;
|
||||
Array.Copy(outBuffer, source, outBuffer, dest, copy);
|
||||
|
||||
// Flush window to outstream
|
||||
if (next == MAXWIN)
|
||||
{
|
||||
for (int i = 0; i < next; i++)
|
||||
ms.WriteByte(outBuffer[i]);
|
||||
next = 0;
|
||||
first = false;
|
||||
}
|
||||
} while (len != 0);
|
||||
}
|
||||
else // literal value
|
||||
{
|
||||
int symbol = EncodedLiterals ? Decode(litcode, br) : br.ReadBits(8);
|
||||
outBuffer[next++] = (byte)symbol;
|
||||
if (next == MAXWIN)
|
||||
{
|
||||
for (int i = 0; i < next; i++)
|
||||
ms.WriteByte(outBuffer[i]);
|
||||
next = 0;
|
||||
first = false;
|
||||
}
|
||||
}
|
||||
} while (true);
|
||||
|
||||
return ms.ToArray();
|
||||
}
|
||||
|
||||
// Decode a code using huffman table h.
|
||||
private static int Decode(Huffman h, BitReader br)
|
||||
{
|
||||
int code = 0; // len bits being decoded
|
||||
int first = 0; // first code of length len
|
||||
int index = 0; // index of first code of length len in symbol table
|
||||
short next = 1;
|
||||
while (true)
|
||||
{
|
||||
code |= br.ReadBits(1) ^ 1; // invert code
|
||||
int count = h.Count[next++];
|
||||
if (code < first + count)
|
||||
return h.Symbol[index + (code - first)];
|
||||
|
||||
index += count;
|
||||
first += count;
|
||||
first <<= 1;
|
||||
code <<= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
class BitReader
|
||||
{
|
||||
readonly byte[] src;
|
||||
int offset = 0;
|
||||
int bitBuffer = 0;
|
||||
int bitCount = 0;
|
||||
|
||||
public BitReader(byte[] src)
|
||||
{
|
||||
this.src = src;
|
||||
}
|
||||
|
||||
public int ReadBits(int count)
|
||||
{
|
||||
int ret = 0;
|
||||
int filled = 0;
|
||||
while (filled < count)
|
||||
{
|
||||
if (bitCount == 0)
|
||||
{
|
||||
bitBuffer = src[offset++];
|
||||
bitCount = 8;
|
||||
}
|
||||
|
||||
ret |= (bitBuffer & 1) << filled;
|
||||
bitBuffer >>= 1;
|
||||
bitCount--;
|
||||
filled++;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Given a list of repeated code lengths rep[0..n-1], where each byte is a
|
||||
* count (high four bits + 1) and a code length (low four bits), generate the
|
||||
* list of code lengths. This compaction reduces the size of the object code.
|
||||
* Then given the list of code lengths length[0..n-1] representing a canonical
|
||||
* Huffman code for n symbols, construct the tables required to decode those
|
||||
* codes. Those tables are the number of codes of each length, and the symbols
|
||||
* sorted by length, retaining their original order within each length.
|
||||
*/
|
||||
class Huffman
|
||||
{
|
||||
public short[] Count; // number of symbols of each length
|
||||
public short[] Symbol; // canonically ordered symbols
|
||||
|
||||
public Huffman(byte[] rep, int n, short SymbolCount)
|
||||
{
|
||||
short[] length = new short[256]; // code lengths
|
||||
int s = 0; // current symbol
|
||||
|
||||
// convert compact repeat counts into symbol bit length list
|
||||
foreach (byte code in rep)
|
||||
{
|
||||
int num = (code >> 4) + 1; // Number of codes (top four bits plus 1)
|
||||
byte len = (byte)(code & 15); // Code length (low four bits)
|
||||
do
|
||||
{
|
||||
length[s++] = len;
|
||||
} while (--num > 0);
|
||||
}
|
||||
n = s;
|
||||
|
||||
// count number of codes of each length
|
||||
Count = new short[Blast.MAXBITS + 1];
|
||||
for (int i = 0; i < n; i++)
|
||||
Count[length[i]]++;
|
||||
|
||||
// no codes!
|
||||
if (Count[0] == n)
|
||||
return;
|
||||
|
||||
// check for an over-subscribed or incomplete set of lengths
|
||||
int left = 1; // one possible code of zero length
|
||||
for (int len = 1; len <= Blast.MAXBITS; len++)
|
||||
{
|
||||
left <<= 1;
|
||||
// one more bit, double codes left
|
||||
left -= Count[len];
|
||||
// deduct count from possible codes
|
||||
if (left < 0)
|
||||
throw new InvalidDataException ("over subscribed code set");
|
||||
}
|
||||
|
||||
// generate offsets into symbol table for each length for sorting
|
||||
short[] offs = new short[Blast.MAXBITS + 1];
|
||||
for (int len = 1; len < Blast.MAXBITS; len++)
|
||||
offs[len + 1] = (short)(offs[len] + Count[len]);
|
||||
|
||||
// put symbols in table sorted by length, by symbol order within each length
|
||||
Symbol = new short[SymbolCount];
|
||||
for (short i = 0; i < n; i++)
|
||||
if (length[i] != 0)
|
||||
Symbol[offs[length[i]]++] = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
#region Copyright & License Information
|
||||
/*
|
||||
* Copyright 2007-2011 The OpenRA Developers (see AUTHORS)
|
||||
* This file is part of OpenRA, which is free software. It is made
|
||||
* available to you under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation. For more information,
|
||||
* see COPYING.
|
||||
*
|
||||
* This file is based on the blast routines (version 1.1 by Mark Adler)
|
||||
* included in zlib/contrib
|
||||
*/
|
||||
#endregion
|
||||
|
||||
using System;
|
||||
using System.IO;
|
||||
|
||||
namespace OpenRA.FileFormats
|
||||
{
|
||||
public static class Blast
|
||||
{
|
||||
public static readonly int MAXBITS = 13; // maximum code length
|
||||
public static readonly int MAXWIN = 4096; // maximum window size
|
||||
|
||||
static byte[] litlen = new byte[] {
|
||||
11, 124, 8, 7, 28, 7, 188, 13, 76, 4,
|
||||
10, 8, 12, 10, 12, 10, 8, 23, 8, 9,
|
||||
7, 6, 7, 8, 7, 6, 55, 8, 23, 24,
|
||||
12, 11, 7, 9, 11, 12, 6, 7, 22, 5,
|
||||
7, 24, 6, 11, 9, 6, 7, 22, 7, 11,
|
||||
38, 7, 9, 8, 25, 11, 8, 11, 9, 12,
|
||||
8, 12, 5, 38, 5, 38, 5, 11, 7, 5,
|
||||
6, 21, 6, 10, 53, 8, 7, 24, 10, 27,
|
||||
44, 253, 253, 253, 252, 252, 252, 13, 12, 45,
|
||||
12, 45, 12, 61, 12, 45, 44, 173
|
||||
};
|
||||
|
||||
// bit lengths of length codes 0..15
|
||||
static byte[] lenlen = new byte[] { 2, 35, 36, 53, 38, 23 };
|
||||
|
||||
// bit lengths of distance codes 0..63
|
||||
static byte[] distlen = new byte[] { 2, 20, 53, 230, 247, 151, 248 };
|
||||
|
||||
// base for length codes
|
||||
static short[] lengthbase = new short[] {
|
||||
3, 2, 4, 5, 6, 7, 8, 9, 10, 12,
|
||||
16, 24, 40, 72, 136, 264
|
||||
};
|
||||
|
||||
// extra bits for length codes
|
||||
static byte[] extra = new byte[] {
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 1, 2,
|
||||
3, 4, 5, 6, 7, 8
|
||||
};
|
||||
|
||||
static Huffman litcode = new Huffman(litlen, litlen.Length, 256);
|
||||
static Huffman lencode = new Huffman(lenlen, lenlen.Length, 16);
|
||||
static Huffman distcode = new Huffman(distlen, distlen.Length, 64);
|
||||
|
||||
// Decode PKWare Compression Library stream.
|
||||
public static byte[] Decompress(byte[] src)
|
||||
{
|
||||
BitReader br = new BitReader(src);
|
||||
|
||||
// Are literals coded?
|
||||
int coded = br.ReadBits(8);
|
||||
|
||||
if (coded < 0 || coded > 1)
|
||||
throw new NotImplementedException("Invalid datastream");
|
||||
bool EncodedLiterals = (coded == 1);
|
||||
|
||||
// log2(dictionary size) - 6
|
||||
int dict = br.ReadBits(8);
|
||||
if (dict < 4 || dict > 6)
|
||||
throw new InvalidDataException("Invalid dictionary size");
|
||||
|
||||
// output state
|
||||
ushort next = 0; // index of next write location in out[]
|
||||
bool first = true; // true to check distances (for first 4K)
|
||||
byte[] outBuffer = new byte[MAXWIN]; // output buffer and sliding window
|
||||
var ms = new MemoryStream();
|
||||
|
||||
// decode literals and length/distance pairs
|
||||
do
|
||||
{
|
||||
// length/distance pair
|
||||
if (br.ReadBits(1) == 1)
|
||||
{
|
||||
// Length
|
||||
int symbol = Decode(lencode, br);
|
||||
int len = lengthbase[symbol] + br.ReadBits(extra[symbol]);
|
||||
if (len == 519) // Magic number for "done"
|
||||
{
|
||||
for (int i = 0; i < next; i++)
|
||||
ms.WriteByte(outBuffer[i]);
|
||||
break;
|
||||
}
|
||||
|
||||
// Distance
|
||||
symbol = len == 2 ? 2 : dict;
|
||||
int dist = Decode(distcode, br) << symbol;
|
||||
dist += br.ReadBits(symbol);
|
||||
dist++;
|
||||
|
||||
if (first && dist > next)
|
||||
throw new InvalidDataException("Attempt to jump before data");
|
||||
|
||||
// copy length bytes from distance bytes back
|
||||
do
|
||||
{
|
||||
int dest = next;
|
||||
int source = dest - dist;
|
||||
|
||||
int copy = MAXWIN;
|
||||
if (next < dist)
|
||||
{
|
||||
source += copy;
|
||||
copy = dist;
|
||||
}
|
||||
|
||||
copy -= next;
|
||||
if (copy > len)
|
||||
copy = len;
|
||||
|
||||
len -= copy;
|
||||
next += (ushort)copy;
|
||||
Array.Copy(outBuffer, source, outBuffer, dest, copy);
|
||||
|
||||
// Flush window to outstream
|
||||
if (next == MAXWIN)
|
||||
{
|
||||
for (int i = 0; i < next; i++)
|
||||
ms.WriteByte(outBuffer[i]);
|
||||
next = 0;
|
||||
first = false;
|
||||
}
|
||||
} while (len != 0);
|
||||
}
|
||||
else // literal value
|
||||
{
|
||||
int symbol = EncodedLiterals ? Decode(litcode, br) : br.ReadBits(8);
|
||||
outBuffer[next++] = (byte)symbol;
|
||||
if (next == MAXWIN)
|
||||
{
|
||||
for (int i = 0; i < next; i++)
|
||||
ms.WriteByte(outBuffer[i]);
|
||||
next = 0;
|
||||
first = false;
|
||||
}
|
||||
}
|
||||
} while (true);
|
||||
|
||||
return ms.ToArray();
|
||||
}
|
||||
|
||||
// Decode a code using huffman table h.
|
||||
private static int Decode(Huffman h, BitReader br)
|
||||
{
|
||||
int code = 0; // len bits being decoded
|
||||
int first = 0; // first code of length len
|
||||
int index = 0; // index of first code of length len in symbol table
|
||||
short next = 1;
|
||||
while (true)
|
||||
{
|
||||
code |= br.ReadBits(1) ^ 1; // invert code
|
||||
int count = h.Count[next++];
|
||||
if (code < first + count)
|
||||
return h.Symbol[index + (code - first)];
|
||||
|
||||
index += count;
|
||||
first += count;
|
||||
first <<= 1;
|
||||
code <<= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
class BitReader
|
||||
{
|
||||
readonly byte[] src;
|
||||
int offset = 0;
|
||||
int bitBuffer = 0;
|
||||
int bitCount = 0;
|
||||
|
||||
public BitReader(byte[] src)
|
||||
{
|
||||
this.src = src;
|
||||
}
|
||||
|
||||
public int ReadBits(int count)
|
||||
{
|
||||
int ret = 0;
|
||||
int filled = 0;
|
||||
while (filled < count)
|
||||
{
|
||||
if (bitCount == 0)
|
||||
{
|
||||
bitBuffer = src[offset++];
|
||||
bitCount = 8;
|
||||
}
|
||||
|
||||
ret |= (bitBuffer & 1) << filled;
|
||||
bitBuffer >>= 1;
|
||||
bitCount--;
|
||||
filled++;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Given a list of repeated code lengths rep[0..n-1], where each byte is a
|
||||
* count (high four bits + 1) and a code length (low four bits), generate the
|
||||
* list of code lengths. This compaction reduces the size of the object code.
|
||||
* Then given the list of code lengths length[0..n-1] representing a canonical
|
||||
* Huffman code for n symbols, construct the tables required to decode those
|
||||
* codes. Those tables are the number of codes of each length, and the symbols
|
||||
* sorted by length, retaining their original order within each length.
|
||||
*/
|
||||
class Huffman
|
||||
{
|
||||
public short[] Count; // number of symbols of each length
|
||||
public short[] Symbol; // canonically ordered symbols
|
||||
|
||||
public Huffman(byte[] rep, int n, short SymbolCount)
|
||||
{
|
||||
short[] length = new short[256]; // code lengths
|
||||
int s = 0; // current symbol
|
||||
|
||||
// convert compact repeat counts into symbol bit length list
|
||||
foreach (byte code in rep)
|
||||
{
|
||||
int num = (code >> 4) + 1; // Number of codes (top four bits plus 1)
|
||||
byte len = (byte)(code & 15); // Code length (low four bits)
|
||||
do
|
||||
{
|
||||
length[s++] = len;
|
||||
} while (--num > 0);
|
||||
}
|
||||
n = s;
|
||||
|
||||
// count number of codes of each length
|
||||
Count = new short[Blast.MAXBITS + 1];
|
||||
for (int i = 0; i < n; i++)
|
||||
Count[length[i]]++;
|
||||
|
||||
// no codes!
|
||||
if (Count[0] == n)
|
||||
return;
|
||||
|
||||
// check for an over-subscribed or incomplete set of lengths
|
||||
int left = 1; // one possible code of zero length
|
||||
for (int len = 1; len <= Blast.MAXBITS; len++)
|
||||
{
|
||||
left <<= 1;
|
||||
// one more bit, double codes left
|
||||
left -= Count[len];
|
||||
// deduct count from possible codes
|
||||
if (left < 0)
|
||||
throw new InvalidDataException ("over subscribed code set");
|
||||
}
|
||||
|
||||
// generate offsets into symbol table for each length for sorting
|
||||
short[] offs = new short[Blast.MAXBITS + 1];
|
||||
for (int len = 1; len < Blast.MAXBITS; len++)
|
||||
offs[len + 1] = (short)(offs[len] + Count[len]);
|
||||
|
||||
// put symbols in table sorted by length, by symbol order within each length
|
||||
Symbol = new short[SymbolCount];
|
||||
for (short i = 0; i < n; i++)
|
||||
if (length[i] != 0)
|
||||
Symbol[offs[length[i]]++] = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user