Files
OpenRA/OpenRA.Mods.Common/FileFormats/WavReader.cs
2021-06-29 18:33:21 -05:00

307 lines
8.4 KiB
C#

#region Copyright & License Information
/*
* Copyright 2007-2021 The OpenRA Developers (see AUTHORS)
* This file is part of OpenRA, which is free software. It is made
* available to you under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version. For more
* information, see COPYING.
*/
#endregion
using System;
using System.Collections.Generic;
using System.IO;
using OpenRA.Primitives;
namespace OpenRA.Mods.Common.FileFormats
{
public static class WavReader
{
enum WaveType { Pcm = 0x1, MsAdpcm = 0x2, ImaAdpcm = 0x11 }
public static bool LoadSound(Stream s, out Func<Stream> result, out short channels, out int sampleBits, out int sampleRate)
{
result = null;
channels = -1;
sampleBits = -1;
sampleRate = -1;
var type = s.ReadASCII(4);
if (type != "RIFF")
return false;
s.ReadInt32(); // File-size
var format = s.ReadASCII(4);
if (format != "WAVE")
return false;
WaveType audioType = 0;
var dataOffset = -1L;
var dataSize = -1;
var uncompressedSize = -1;
short blockAlign = -1;
while (s.Position < s.Length)
{
if ((s.Position & 1) == 1)
s.ReadByte(); // Alignment
if (s.Position == s.Length)
break; // Break if we aligned with end of stream
var blockType = s.ReadASCII(4);
switch (blockType)
{
case "fmt ":
var fmtChunkSize = s.ReadInt32();
var audioFormat = s.ReadInt16();
audioType = (WaveType)audioFormat;
if (!Enum.IsDefined(typeof(WaveType), audioType))
throw new NotSupportedException($"Compression type {audioFormat} is not supported.");
channels = s.ReadInt16();
sampleRate = s.ReadInt32();
s.ReadInt32(); // Byte Rate
blockAlign = s.ReadInt16();
sampleBits = s.ReadInt16();
s.ReadBytes(fmtChunkSize - 16);
break;
case "fact":
var chunkSize = s.ReadInt32();
uncompressedSize = s.ReadInt32();
s.ReadBytes(chunkSize - 4);
break;
case "data":
dataSize = s.ReadInt32();
dataOffset = s.Position;
s.Position += dataSize;
break;
case "LIST":
case "cue ":
var listCueChunkSize = s.ReadInt32();
s.ReadBytes(listCueChunkSize);
break;
default:
s.Position = s.Length; // Skip to end of stream
break;
}
}
// sampleBits refers to the output bitrate, which is always 16 for adpcm.
if (audioType != WaveType.Pcm)
sampleBits = 16;
var chan = channels;
result = () =>
{
var audioStream = SegmentStream.CreateWithoutOwningStream(s, dataOffset, dataSize);
if (audioType == WaveType.ImaAdpcm)
return new WavStreamImaAdpcm(audioStream, dataSize, blockAlign, chan, uncompressedSize);
if (audioType == WaveType.MsAdpcm)
return new WavStreamMsAdpcm(audioStream, dataSize, blockAlign, chan);
return audioStream; // Data is already PCM format.
};
return true;
}
public static float WaveLength(Stream s)
{
s.Position = 12;
var fmt = s.ReadASCII(4);
if (fmt != "fmt ")
return 0;
s.Position = 22;
var channels = s.ReadInt16();
var sampleRate = s.ReadInt32();
s.Position = 34;
var bitsPerSample = s.ReadInt16();
var length = s.Length * 8;
return length / (channels * sampleRate * bitsPerSample);
}
sealed class WavStreamImaAdpcm : ReadOnlyAdapterStream
{
readonly short channels;
readonly int numBlocks;
readonly int blockDataSize;
readonly int outputSize;
readonly int[] predictor;
readonly int[] index;
readonly byte[] interleaveBuffer;
int outOffset;
int currentBlock;
public WavStreamImaAdpcm(Stream stream, int dataSize, short blockAlign, short channels, int uncompressedSize)
: base(stream)
{
this.channels = channels;
numBlocks = dataSize / blockAlign;
blockDataSize = blockAlign - (channels * 4);
outputSize = uncompressedSize * channels * 2;
predictor = new int[channels];
index = new int[channels];
interleaveBuffer = new byte[channels * 16];
}
protected override bool BufferData(Stream baseStream, Queue<byte> data)
{
// Decode each block of IMA ADPCM data
// Each block starts with a initial state per-channel
for (var c = 0; c < channels; c++)
{
predictor[c] = baseStream.ReadInt16();
index[c] = baseStream.ReadUInt8();
baseStream.ReadUInt8(); // Unknown/Reserved
// Output first sample from input
data.Enqueue((byte)predictor[c]);
data.Enqueue((byte)(predictor[c] >> 8));
outOffset += 2;
if (outOffset >= outputSize)
return true;
}
// Decode and output remaining data in this block
var blockOffset = 0;
while (blockOffset < blockDataSize)
{
for (var c = 0; c < channels; c++)
{
// Decode 4 bytes (to 16 bytes of output) per channel
var chunk = baseStream.ReadBytes(4);
var decoded = ImaAdpcmReader.LoadImaAdpcmSound(chunk, ref index[c], ref predictor[c]);
// Interleave output, one sample per channel
var interleaveChannelOffset = 2 * c;
for (var i = 0; i < decoded.Length; i += 2)
{
var interleaveSampleOffset = interleaveChannelOffset + i;
interleaveBuffer[interleaveSampleOffset] = decoded[i];
interleaveBuffer[interleaveSampleOffset + 1] = decoded[i + 1];
interleaveChannelOffset += 2 * (channels - 1);
}
blockOffset += 4;
}
var outputRemaining = outputSize - outOffset;
var toCopy = Math.Min(outputRemaining, interleaveBuffer.Length);
for (var i = 0; i < toCopy; i++)
data.Enqueue(interleaveBuffer[i]);
outOffset += 16 * channels;
if (outOffset >= outputSize)
return true;
}
return ++currentBlock >= numBlocks;
}
}
// Format docs https://wiki.multimedia.cx/index.php/Microsoft_ADPCM
public sealed class WavStreamMsAdpcm : ReadOnlyAdapterStream
{
static readonly int[] AdaptationTable =
{
230, 230, 230, 230, 307, 409, 512, 614,
768, 614, 512, 409, 307, 230, 230, 230
};
static readonly int[] AdaptCoeff1 = { 256, 512, 0, 192, 240, 460, 392 };
static readonly int[] AdaptCoeff2 = { 0, -256, 0, 64, 0, -208, -232 };
readonly short channels;
readonly int blockDataSize;
readonly int numBlocks;
int currentBlock;
public WavStreamMsAdpcm(Stream stream, int dataSize, short blockAlign, short channels)
: base(stream)
{
this.channels = channels;
blockDataSize = blockAlign - channels * 7;
numBlocks = dataSize / blockAlign;
}
protected override bool BufferData(Stream baseStream, Queue<byte> data)
{
var bpred = new byte[channels];
var chanIdelta = new short[channels];
var s1 = new short[channels];
var s2 = new short[channels];
for (var c = 0; c < channels; c++)
bpred[c] = baseStream.ReadUInt8();
for (var c = 0; c < channels; c++)
chanIdelta[c] = baseStream.ReadInt16();
for (var c = 0; c < channels; c++)
s1[c] = baseStream.ReadInt16();
for (var c = 0; c < channels; c++)
s2[c] = WriteSample(baseStream.ReadInt16(), data);
for (var c = 0; c < channels; c++)
WriteSample(s1[c], data);
var channelNumber = channels > 1 ? 1 : 0;
for (var blockindx = 0; blockindx < blockDataSize; blockindx++)
{
var bytecode = baseStream.ReadUInt8();
// Decode the first nibble, this is always left channel
WriteSample(DecodeNibble((short)((bytecode >> 4) & 0x0F), bpred[0], ref chanIdelta[0], ref s1[0], ref s2[0]), data);
// Decode the second nibble, for stereo this will be the right channel
WriteSample(DecodeNibble((short)(bytecode & 0x0F), bpred[channelNumber], ref chanIdelta[channelNumber], ref s1[channelNumber], ref s2[channelNumber]), data);
}
return ++currentBlock >= numBlocks;
}
short WriteSample(short t, Queue<byte> data)
{
data.Enqueue((byte)t);
data.Enqueue((byte)(t >> 8));
return t;
}
// This code contains elements from libsndfile
short DecodeNibble(short nibble, byte bpred, ref short idelta, ref short s1, ref short s2)
{
var predict = ((s1 * AdaptCoeff1[bpred]) + (s2 * AdaptCoeff2[bpred])) >> 8;
var twosCompliment = (nibble & 0x8) > 0
? nibble - 0x10
: nibble;
s2 = s1;
s1 = (short)(twosCompliment * idelta + predict).Clamp(-32768, 32767);
// Compute next Adaptive Scale Factor (ASF), saturating to lower bound of 16
idelta = (short)((AdaptationTable[nibble] * idelta) >> 8);
if (idelta < 16)
idelta = 16;
return s1;
}
}
}
}