Files
OpenRA/OpenRA.Game/Graphics/Util.cs
RoosterDragon 5f97e2de5a Make Color use uint for ARGB.
This is a more natural representation than int that allows removal of casts in many places that require uint. Additionally, we can change the internal representation from long to uint, making the Color struct smaller. Since arrays of colors are common, this can save on memory.
2024-03-09 21:10:02 +02:00

323 lines
9.6 KiB
C#

#region Copyright & License Information
/*
* Copyright (c) The OpenRA Developers and Contributors
* This file is part of OpenRA, which is free software. It is made
* available to you under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version. For more
* information, see COPYING.
*/
#endregion
using System;
using OpenRA.FileFormats;
using OpenRA.Primitives;
namespace OpenRA.Graphics
{
public static class Util
{
// yes, our channel order is nuts.
static readonly int[] ChannelMasks = { 2, 1, 0, 3 };
public static uint[] CreateQuadIndices(int quads)
{
var indices = new uint[quads * 6];
ReadOnlySpan<uint> cornerVertexMap = stackalloc uint[] { 0, 1, 2, 2, 3, 0 };
for (var i = 0; i < indices.Length; i++)
indices[i] = cornerVertexMap[i % 6] + (uint)(4 * (i / 6));
return indices;
}
public static void FastCreateQuad(Vertex[] vertices, in float3 o, Sprite r, int2 samplers, int paletteTextureIndex, int nv,
in float3 size, in float3 tint, float alpha, float rotation = 0f)
{
float3 a, b, c, d;
// Rotate sprite if rotation angle is not equal to 0
if (rotation != 0f)
{
var center = o + 0.5f * size;
var angleSin = (float)Math.Sin(-rotation);
var angleCos = (float)Math.Cos(-rotation);
// Rotated offset for +/- x with +/- y
var ra = 0.5f * new float3(
size.X * angleCos - size.Y * angleSin,
size.X * angleSin + size.Y * angleCos,
(size.X * angleSin + size.Y * angleCos) * size.Z / size.Y);
// Rotated offset for +/- x with -/+ y
var rb = 0.5f * new float3(
size.X * angleCos + size.Y * angleSin,
size.X * angleSin - size.Y * angleCos,
(size.X * angleSin - size.Y * angleCos) * size.Z / size.Y);
a = center - ra;
b = center + rb;
c = center + ra;
d = center - rb;
}
else
{
a = o;
b = new float3(o.X + size.X, o.Y, o.Z);
c = new float3(o.X + size.X, o.Y + size.Y, o.Z + size.Z);
d = new float3(o.X, o.Y + size.Y, o.Z + size.Z);
}
FastCreateQuad(vertices, a, b, c, d, r, samplers, paletteTextureIndex, tint, alpha, nv);
}
public static void FastCreateQuad(Vertex[] vertices,
in float3 a, in float3 b, in float3 c, in float3 d,
Sprite r, int2 samplers, int paletteTextureIndex,
in float3 tint, float alpha, int nv)
{
float sl = 0;
float st = 0;
float sr = 0;
float sb = 0;
// See combined.vert for documentation on the channel attribute format
var attribC = r.Channel == TextureChannel.RGBA ? 0x02 : ((byte)r.Channel) << 1 | 0x01;
attribC |= samplers.X << 6;
if (r is SpriteWithSecondaryData ss)
{
sl = ss.SecondaryLeft;
st = ss.SecondaryTop;
sr = ss.SecondaryRight;
sb = ss.SecondaryBottom;
attribC |= ((byte)ss.SecondaryChannel) << 4 | 0x08;
attribC |= samplers.Y << 9;
}
attribC |= (paletteTextureIndex & 0xFFFF) << 16;
var uAttribC = (uint)attribC;
vertices[nv] = new Vertex(a, r.Left, r.Top, sl, st, uAttribC, tint, alpha);
vertices[nv + 1] = new Vertex(b, r.Right, r.Top, sr, st, uAttribC, tint, alpha);
vertices[nv + 2] = new Vertex(c, r.Right, r.Bottom, sr, sb, uAttribC, tint, alpha);
vertices[nv + 3] = new Vertex(d, r.Left, r.Bottom, sl, sb, uAttribC, tint, alpha);
}
public static void FastCopyIntoChannel(Sprite dest, byte[] src, SpriteFrameType srcType, bool premultiplied = false)
{
var destData = dest.Sheet.GetData();
var width = dest.Bounds.Width;
var height = dest.Bounds.Height;
if (dest.Channel == TextureChannel.RGBA)
{
var destStride = dest.Sheet.Size.Width;
unsafe
{
// Cast the data to an int array so we can copy the src data directly
fixed (byte* bd = &destData[0])
{
var data = (uint*)bd;
var x = dest.Bounds.Left;
var y = dest.Bounds.Top;
var k = 0;
for (var j = 0; j < height; j++)
{
for (var i = 0; i < width; i++)
{
byte r, g, b, a;
switch (srcType)
{
case SpriteFrameType.Bgra32:
case SpriteFrameType.Bgr24:
{
b = src[k++];
g = src[k++];
r = src[k++];
a = srcType == SpriteFrameType.Bgra32 ? src[k++] : (byte)255;
break;
}
case SpriteFrameType.Rgba32:
case SpriteFrameType.Rgb24:
{
r = src[k++];
g = src[k++];
b = src[k++];
a = srcType == SpriteFrameType.Rgba32 ? src[k++] : (byte)255;
break;
}
default:
throw new InvalidOperationException($"Unknown SpriteFrameType {srcType}");
}
var cc = Color.FromArgb(a, r, g, b);
if (premultiplied)
data[(y + j) * destStride + x + i] = cc.ToArgb();
else
data[(y + j) * destStride + x + i] = PremultiplyAlpha(cc).ToArgb();
}
}
}
}
}
else
{
var destStride = dest.Sheet.Size.Width * 4;
var destOffset = destStride * dest.Bounds.Top + dest.Bounds.Left * 4 + ChannelMasks[(int)dest.Channel];
var destSkip = destStride - 4 * width;
var srcOffset = 0;
for (var j = 0; j < height; j++)
{
for (var i = 0; i < width; i++, srcOffset++)
{
destData[destOffset] = src[srcOffset];
destOffset += 4;
}
destOffset += destSkip;
}
}
}
public static void FastCopyIntoSprite(Sprite dest, Png src)
{
var destData = dest.Sheet.GetData();
var destStride = dest.Sheet.Size.Width;
var width = dest.Bounds.Width;
var height = dest.Bounds.Height;
unsafe
{
// Cast the data to an int array so we can copy the src data directly
fixed (byte* bd = &destData[0])
{
var data = (uint*)bd;
var x = dest.Bounds.Left;
var y = dest.Bounds.Top;
var k = 0;
for (var j = 0; j < height; j++)
{
for (var i = 0; i < width; i++)
{
Color cc;
switch (src.Type)
{
case SpriteFrameType.Indexed8:
{
cc = src.Palette[src.Data[k++]];
break;
}
case SpriteFrameType.Rgba32:
case SpriteFrameType.Rgb24:
{
var r = src.Data[k++];
var g = src.Data[k++];
var b = src.Data[k++];
var a = src.Type == SpriteFrameType.Rgba32 ? src.Data[k++] : (byte)255;
cc = Color.FromArgb(a, r, g, b);
break;
}
// Pngs don't support BGR[A], so no need to include them here
default:
throw new InvalidOperationException($"Unknown SpriteFrameType {src.Type}");
}
data[(y + j) * destStride + x + i] = PremultiplyAlpha(cc).ToArgb();
}
}
}
}
}
/// <summary>Rotates a quad about its center in the x-y plane.</summary>
/// <param name="tl">The top left vertex of the quad.</param>
/// <param name="size">A float3 containing the X, Y, and Z lengths of the quad.</param>
/// <param name="rotation">The number of radians to rotate by.</param>
/// <returns>An array of four vertices representing the rotated quad (top-left, top-right, bottom-right, bottom-left).</returns>
public static float3[] RotateQuad(float3 tl, float3 size, float rotation)
{
var center = tl + 0.5f * size;
var angleSin = (float)Math.Sin(-rotation);
var angleCos = (float)Math.Cos(-rotation);
// Rotated offset for +/- x with +/- y
var ra = 0.5f * new float3(
size.X * angleCos - size.Y * angleSin,
size.X * angleSin + size.Y * angleCos,
(size.X * angleSin + size.Y * angleCos) * size.Z / size.Y);
// Rotated offset for +/- x with -/+ y
var rb = 0.5f * new float3(
size.X * angleCos + size.Y * angleSin,
size.X * angleSin - size.Y * angleCos,
(size.X * angleSin - size.Y * angleCos) * size.Z / size.Y);
return new float3[]
{
center - ra,
center + rb,
center + ra,
center - rb
};
}
/// <summary>
/// Returns the bounds of an object. Used for determining which objects need to be rendered on screen, and which do not.
/// </summary>
/// <param name="offset">The top left vertex of the object.</param>
/// <param name="size">A float 3 containing the X, Y, and Z lengths of the object.</param>
/// <param name="rotation">The angle to rotate the object by (use 0f if there is no rotation).</param>
public static Rectangle BoundingRectangle(float3 offset, float3 size, float rotation)
{
if (rotation == 0f)
return new Rectangle((int)offset.X, (int)offset.Y, (int)size.X, (int)size.Y);
var rotatedQuad = RotateQuad(offset, size, rotation);
var minX = rotatedQuad[0].X;
var maxX = rotatedQuad[0].X;
var minY = rotatedQuad[0].Y;
var maxY = rotatedQuad[0].Y;
for (var i = 1; i < rotatedQuad.Length; i++)
{
minX = Math.Min(rotatedQuad[i].X, minX);
maxX = Math.Max(rotatedQuad[i].X, maxX);
minY = Math.Min(rotatedQuad[i].Y, minY);
maxY = Math.Max(rotatedQuad[i].Y, maxY);
}
return new Rectangle(
(int)minX,
(int)minY,
(int)Math.Ceiling(maxX) - (int)minX,
(int)Math.Ceiling(maxY) - (int)minY);
}
public static Color PremultiplyAlpha(Color c)
{
if (c.A == byte.MaxValue)
return c;
var a = c.A / 255f;
return Color.FromArgb(c.A, (byte)(c.R * a + 0.5f), (byte)(c.G * a + 0.5f), (byte)(c.B * a + 0.5f));
}
public static Color PremultipliedColorLerp(float t, Color c1, Color c2)
{
// Colors must be lerped in a non-multiplied color space
var a1 = 255f / c1.A;
var a2 = 255f / c2.A;
return PremultiplyAlpha(Color.FromArgb(
(int)(t * c2.A + (1 - t) * c1.A),
(int)((byte)(t * a2 * c2.R + 0.5f) + (1 - t) * (byte)(a1 * c1.R + 0.5f)),
(int)((byte)(t * a2 * c2.G + 0.5f) + (1 - t) * (byte)(a1 * c1.G + 0.5f)),
(int)((byte)(t * a2 * c2.B + 0.5f) + (1 - t) * (byte)(a1 * c1.B + 0.5f))));
}
}
}