Files
OpenRA/OpenRA.Mods.Common/Traits/World/WeatherOverlay.cs
Paul Chote 864cc4becc Fix weather particle physics.
The trait documentation specified that the speed
and offset values are px/tick, but they have actually
always been treated as px/render.

Fix the update logic and rescale the map definitions
to account for the fixed behaviour.
2021-08-20 20:38:37 +02:00

256 lines
9.1 KiB
C#

#region Copyright & License Information
/*
* Copyright 2007-2021 The OpenRA Developers (see AUTHORS)
* This file is part of OpenRA, which is free software. It is made
* available to you under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version. For more
* information, see COPYING.
*/
#endregion
using System;
using OpenRA.Graphics;
using OpenRA.Primitives;
using OpenRA.Support;
using OpenRA.Traits;
namespace OpenRA.Mods.Common.Traits
{
[Desc("Adds a particle-based overlay.")]
public class WeatherOverlayInfo : TraitInfo, ILobbyCustomRulesIgnore
{
[Desc("Average number of particles per 100x100 px square.")]
public readonly int ParticleDensityFactor = 8;
[Desc("Should the level of the wind change over time, or just stick to the first value of WindLevels?")]
public readonly bool ChangingWindLevel = true;
[Desc("The levels of wind intensity (particles x-axis movement in px/tick).")]
public readonly int[] WindLevels = { -12, -7, -5, 0, 5, 7, 12 };
[Desc("Works only if ChangingWindLevel is enabled. Min. and max. ticks needed to change the WindLevel.")]
public readonly int[] WindTick = { 150, 550 };
[Desc("Hard or soft fading between the WindLevels.")]
public readonly bool InstantWindChanges = false;
[Desc("Particles are drawn in squares when enabled, otherwise with lines.")]
public readonly bool UseSquares = true;
[Desc("Size / width of the particle in px.")]
public readonly int[] ParticleSize = { 1, 3 };
[Desc("Scatters falling direction on the x-axis. Scatter min. and max. value in px/tick.")]
public readonly int[] ScatterDirection = { -1, 1 };
[Desc("Min. and max. speed at which particles fall in px/tick.")]
public readonly float[] Gravity = { 2.5f, 5f };
[Desc("The current offset value for the swing movement. SwingOffset min. and max. value in px/tick.")]
public readonly float[] SwingOffset = { 2.5f, 3.5f };
[Desc("The value that particles swing to the side each update. SwingSpeed min. and max. value in px/tick.")]
public readonly float[] SwingSpeed = { 0.0025f, 0.06f };
[Desc("The value range that can be swung to the left or right. SwingAmplitude min. and max. value in px/tick.")]
public readonly float[] SwingAmplitude = { 1.0f, 1.5f };
[Desc("The randomly selected rgb(a) hex colors for the particles. Use this order: rrggbb[aa], rrggbb[aa], ...")]
public readonly Color[] ParticleColors =
{
Color.FromArgb(236, 236, 236),
Color.FromArgb(228, 228, 228),
Color.FromArgb(208, 208, 208),
Color.FromArgb(188, 188, 188)
};
[Desc("Works only with line enabled and can be used to fade out the tail of the line like a contrail.")]
public readonly byte LineTailAlphaValue = 200;
public override object Create(ActorInitializer init) { return new WeatherOverlay(init.World, this); }
}
public class WeatherOverlay : ITick, IRenderAboveWorld, INotifyViewportZoomExtentsChanged
{
readonly struct Particle
{
public readonly float2 Pos;
public readonly int Size;
public readonly float DirectionScatterX;
public readonly float Gravity;
public readonly float SwingOffset;
public readonly float SwingSpeed;
public readonly int SwingDirection;
public readonly float SwingAmplitude;
public readonly Color Color;
public readonly Color TailColor;
public Particle(WeatherOverlayInfo info, MersenneTwister r, Rectangle viewport)
{
var x = r.Next(viewport.Left, viewport.Right);
var y = r.Next(viewport.Top, viewport.Bottom);
Pos = new int2(x, y);
Size = r.Next(info.ParticleSize[0], info.ParticleSize[1] + 1);
DirectionScatterX = info.ScatterDirection[0] + r.Next(info.ScatterDirection[1] - info.ScatterDirection[0]);
Gravity = float2.Lerp(info.Gravity[0], info.Gravity[1], r.NextFloat());
SwingOffset = float2.Lerp(info.SwingOffset[0], info.SwingOffset[1], r.NextFloat());
SwingSpeed = float2.Lerp(info.SwingSpeed[0], info.SwingSpeed[1], r.NextFloat());
SwingDirection = r.Next(2) == 0 ? 1 : -1;
SwingAmplitude = float2.Lerp(info.SwingAmplitude[0], info.SwingAmplitude[1], r.NextFloat());
Color = info.ParticleColors.Random(r);
TailColor = Color.FromArgb(info.LineTailAlphaValue, Color.R, Color.G, Color.B);
}
Particle(in Particle source)
{
Pos = source.Pos;
Size = source.Size;
DirectionScatterX = source.DirectionScatterX;
Gravity = source.Gravity;
SwingOffset = source.SwingOffset;
SwingSpeed = source.SwingSpeed;
SwingDirection = source.SwingDirection;
SwingAmplitude = source.SwingAmplitude;
Color = source.Color;
TailColor = source.TailColor;
}
public Particle(in Particle source, float2 pos)
: this(source)
{
Pos = pos;
}
public Particle(in Particle source, float2 pos, int swingDirection, float swingOffset)
: this(source)
{
Pos = pos;
SwingDirection = swingDirection;
SwingOffset = swingOffset;
}
}
readonly WeatherOverlayInfo info;
readonly World world;
float windStrength;
int targetWindStrengthIndex;
long windUpdateCountdown;
Particle[] particles;
Size viewportSize;
long lastRender;
public WeatherOverlay(World world, WeatherOverlayInfo info)
{
this.info = info;
this.world = world;
targetWindStrengthIndex = info.ChangingWindLevel ? world.LocalRandom.Next(info.WindLevels.Length) : 0;
windUpdateCountdown = world.LocalRandom.Next(info.WindTick[0], info.WindTick[1]);
windStrength = info.WindLevels[targetWindStrengthIndex];
}
void INotifyViewportZoomExtentsChanged.ViewportZoomExtentsChanged(float minZoom, float maxZoom)
{
// Track particles in a viewport fixed to the minimum zoom level
var s = (1f / minZoom * new float2(Game.Renderer.NativeResolution)).ToInt2();
viewportSize = new Size(s.X, s.Y);
// Randomly distribute particles within the initial viewport
var particleCount = viewportSize.Width * viewportSize.Height * info.ParticleDensityFactor / 10000;
particles = new Particle[particleCount];
var rect = new Rectangle(int2.Zero, viewportSize);
for (var i = 0; i < particles.Length; i++)
particles[i] = new Particle(info, world.LocalRandom, rect);
}
void ITick.Tick(Actor self)
{
if (!info.ChangingWindLevel || info.WindLevels.Length == 1)
return;
if (--windUpdateCountdown <= 0)
{
windUpdateCountdown = self.World.LocalRandom.Next(info.WindTick[0], info.WindTick[1]);
if (targetWindStrengthIndex > 0 && self.World.LocalRandom.Next(2) == 1)
targetWindStrengthIndex--;
else if (targetWindStrengthIndex < info.WindLevels.Length - 1)
targetWindStrengthIndex++;
}
// Fading the wind in little steps towards the TargetWindOffset
var targetWindLevel = info.WindLevels[targetWindStrengthIndex];
if (info.InstantWindChanges)
windStrength = targetWindLevel;
else if (Math.Abs(windStrength - targetWindLevel) > 0.01f)
{
if (windStrength > targetWindLevel)
windStrength -= 0.01f;
else if (windStrength < targetWindLevel)
windStrength += 0.01f;
}
}
void IRenderAboveWorld.RenderAboveWorld(Actor self, WorldRenderer wr)
{
var center = wr.Viewport.CenterLocation;
var viewport = new Rectangle(center - new int2(viewportSize) / 2, viewportSize);
var wcr = Game.Renderer.WorldRgbaColorRenderer;
// SwingSpeed is defined in px/tick so we must account for the fraction of a tick that elapsed since the last render.
// The scale is capped at 1 tick to avoid unexpected behaviour at game start, if RunTime overflows, or if the game stalls.
var runtime = Game.RunTime;
var tickFraction = Math.Min((runtime - lastRender) * 1f / world.Timestep, 1);
lastRender = runtime;
for (var i = 0; i < particles.Length; i++)
{
// Simulate wind and gravity effects on the particle
var p = particles[i];
if (!world.Paused)
{
var swingDirection = p.SwingDirection;
if (p.SwingOffset < -p.SwingAmplitude || p.SwingOffset > p.SwingAmplitude)
swingDirection *= -1;
var swingOffset = p.SwingOffset + p.SwingDirection * p.SwingSpeed;
var pos = p.Pos + tickFraction * new float2(p.DirectionScatterX + p.SwingOffset + windStrength, p.Gravity);
particles[i] = p = new Particle(p, pos, swingDirection, swingOffset);
}
// Move the particle back inside the viewport if necessary
if (!viewport.Contains(p.Pos.ToInt2()))
{
var dx = (p.Pos.X - viewport.Left) % viewport.Width;
var dy = (p.Pos.Y - viewport.Top) % viewport.Height;
if (dx < 0)
dx += viewport.Width;
if (dy < 0)
dy += viewport.Height;
particles[i] = p = new Particle(p, new float2(viewport.Left + dx, viewport.Top + dy));
}
// Render the particle
// We must provide a z coordinate to stop the GL near and far Z limits from culling the geometry
var a = new float3(p.Pos.X, p.Pos.Y, p.Pos.Y);
if (info.UseSquares)
{
var b = a + new float2(p.Size, p.Size);
wcr.FillRect(a, b, p.Color);
}
else
{
var tail = p.Pos + new float2(-windStrength, -p.Gravity * 2 / 3);
var b = new float3(tail.X, tail.Y, tail.Y);
wcr.DrawLine(a, b, p.Size, p.TailColor);
}
}
}
}
}