Files
OpenRA/OpenRA.Mods.Common/Traits/World/PathSearch.cs
2015-01-04 15:02:19 +01:00

363 lines
9.3 KiB
C#

#region Copyright & License Information
/*
* Copyright 2007-2014 The OpenRA Developers (see AUTHORS)
* This file is part of OpenRA, which is free software. It is made
* available to you under the terms of the GNU General Public License
* as published by the Free Software Foundation. For more information,
* see COPYING.
*/
#endregion
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using OpenRA;
using OpenRA.Primitives;
namespace OpenRA.Mods.Common.Traits
{
public sealed class PathSearch : IDisposable
{
public CellLayer<CellInfo> CellInfo;
public PriorityQueue<PathDistance> Queue;
public Func<CPos, int> Heuristic;
public bool CheckForBlocked;
public Actor IgnoredActor;
public bool InReverse;
public HashSet<CPos> Considered;
public Player Owner { get { return self.Owner; } }
public int MaxCost;
Actor self;
MobileInfo mobileInfo;
Func<CPos, int> customCost;
Func<CPos, bool> customBlock;
int laneBias = 1;
public PathSearch(World world, MobileInfo mobileInfo, Actor self)
{
this.self = self;
CellInfo = InitCellInfo();
this.mobileInfo = mobileInfo;
this.self = self;
customCost = null;
Queue = new PriorityQueue<PathDistance>();
Considered = new HashSet<CPos>();
MaxCost = 0;
}
public static PathSearch Search(World world, MobileInfo mi, Actor self, bool checkForBlocked)
{
var search = new PathSearch(world, mi, self)
{
CheckForBlocked = checkForBlocked
};
return search;
}
public static PathSearch FromPoint(World world, MobileInfo mi, Actor self, CPos from, CPos target, bool checkForBlocked)
{
var search = new PathSearch(world, mi, self)
{
Heuristic = DefaultEstimator(target),
CheckForBlocked = checkForBlocked
};
search.AddInitialCell(from);
return search;
}
public static PathSearch FromPoints(World world, MobileInfo mi, Actor self, IEnumerable<CPos> froms, CPos target, bool checkForBlocked)
{
var search = new PathSearch(world, mi, self)
{
Heuristic = DefaultEstimator(target),
CheckForBlocked = checkForBlocked
};
foreach (var sl in froms)
search.AddInitialCell(sl);
return search;
}
public static Func<CPos, int> DefaultEstimator(CPos destination)
{
return here =>
{
var diag = Math.Min(Math.Abs(here.X - destination.X), Math.Abs(here.Y - destination.Y));
var straight = Math.Abs(here.X - destination.X) + Math.Abs(here.Y - destination.Y);
// HACK: this relies on fp and cell-size assumptions.
var h = (3400 * diag / 24) + 100 * (straight - (2 * diag));
return (int)(h * 1.001);
};
}
public PathSearch Reverse()
{
InReverse = true;
return this;
}
public PathSearch WithCustomBlocker(Func<CPos, bool> customBlock)
{
this.customBlock = customBlock;
return this;
}
public PathSearch WithIgnoredActor(Actor b)
{
IgnoredActor = b;
return this;
}
public PathSearch WithHeuristic(Func<CPos, int> h)
{
Heuristic = h;
return this;
}
public PathSearch WithCustomCost(Func<CPos, int> w)
{
customCost = w;
return this;
}
public PathSearch WithoutLaneBias()
{
laneBias = 0;
return this;
}
public PathSearch FromPoint(CPos from)
{
AddInitialCell(from);
return this;
}
// Sets of neighbors for each incoming direction. These exclude the neighbors which are guaranteed
// to be reached more cheaply by a path through our parent cell which does not include the current cell.
// For horizontal/vertical directions, the set is the three cells 'ahead'. For diagonal directions, the set
// is the three cells ahead, plus the two cells to the side, which we cannot exclude without knowing if
// the cell directly between them and our parent is passable.
static CVec[][] directedNeighbors = {
new CVec[] { new CVec(-1, -1), new CVec(0, -1), new CVec(1, -1), new CVec(-1, 0), new CVec(-1, 1) },
new CVec[] { new CVec(-1, -1), new CVec(0, -1), new CVec(1, -1) },
new CVec[] { new CVec(-1, -1), new CVec(0, -1), new CVec(1, -1), new CVec(1, 0), new CVec(1, 1) },
new CVec[] { new CVec(-1, -1), new CVec(-1, 0), new CVec(-1, 1) },
CVec.Directions,
new CVec[] { new CVec(1, -1), new CVec(1, 0), new CVec(1, 1) },
new CVec[] { new CVec(-1, -1), new CVec(-1, 0), new CVec(-1, 1), new CVec(0, 1), new CVec(1, 1) },
new CVec[] { new CVec(-1, 1), new CVec(0, 1), new CVec(1, 1) },
new CVec[] { new CVec(1, -1), new CVec(1, 0), new CVec(-1, 1), new CVec(0, 1), new CVec(1, 1) },
};
static CVec[] GetNeighbors(CPos p, CPos prev)
{
var dx = p.X - prev.X;
var dy = p.Y - prev.Y;
var index = dy * 3 + dx + 4;
return directedNeighbors[index];
}
public CPos Expand(World world)
{
var p = Queue.Pop();
while (CellInfo[p.Location].Seen)
{
if (Queue.Empty)
return p.Location;
p = Queue.Pop();
}
var pCell = CellInfo[p.Location];
pCell.Seen = true;
CellInfo[p.Location] = pCell;
var thisCost = mobileInfo.MovementCostForCell(world, p.Location);
if (thisCost == int.MaxValue)
return p.Location;
if (customCost != null)
{
var c = customCost(p.Location);
if (c == int.MaxValue)
return p.Location;
}
// This current cell is ok; check useful immediate directions:
Considered.Add(p.Location);
var directions = GetNeighbors(p.Location, pCell.Path);
for (var i = 0; i < directions.Length; ++i)
{
var d = directions[i];
var newHere = p.Location + d;
// Is this direction flat-out unusable or already seen?
if (!world.Map.Contains(newHere))
continue;
if (CellInfo[newHere].Seen)
continue;
// Now we may seriously consider this direction using heuristics:
var costHere = mobileInfo.MovementCostForCell(world, newHere);
if (costHere == int.MaxValue)
continue;
if (!mobileInfo.CanEnterCell(world, self, newHere, IgnoredActor, CheckForBlocked ? CellConditions.TransientActors : CellConditions.None))
continue;
if (customBlock != null && customBlock(newHere))
continue;
var est = Heuristic(newHere);
if (est == int.MaxValue)
continue;
var cellCost = costHere;
if (d.X * d.Y != 0)
cellCost = (cellCost * 34) / 24;
var userCost = 0;
if (customCost != null)
{
userCost = customCost(newHere);
cellCost += userCost;
}
// directional bonuses for smoother flow!
if (laneBias != 0)
{
var ux = newHere.X + (InReverse ? 1 : 0) & 1;
var uy = newHere.Y + (InReverse ? 1 : 0) & 1;
if (ux == 0 && d.Y < 0)
cellCost += laneBias;
else if (ux == 1 && d.Y > 0)
cellCost += laneBias;
if (uy == 0 && d.X < 0)
cellCost += laneBias;
else if (uy == 1 && d.X > 0)
cellCost += laneBias;
}
var newCost = CellInfo[p.Location].MinCost + cellCost;
// Cost is even higher; next direction:
if (newCost > CellInfo[newHere].MinCost)
continue;
var hereCell = CellInfo[newHere];
hereCell.Path = p.Location;
hereCell.MinCost = newCost;
CellInfo[newHere] = hereCell;
Queue.Add(new PathDistance(newCost + est, newHere));
if (newCost > MaxCost)
MaxCost = newCost;
Considered.Add(newHere);
}
return p.Location;
}
public void AddInitialCell(CPos location)
{
if (!self.World.Map.Contains(location))
return;
CellInfo[location] = new CellInfo(0, location, false);
Queue.Add(new PathDistance(Heuristic(location), location));
}
static readonly Queue<CellLayer<CellInfo>> CellInfoPool = new Queue<CellLayer<CellInfo>>();
static readonly object DefaultCellInfoLayerSync = new object();
static CellLayer<CellInfo> defaultCellInfoLayer;
static CellLayer<CellInfo> GetFromPool()
{
lock (CellInfoPool)
return CellInfoPool.Dequeue();
}
static void PutBackIntoPool(CellLayer<CellInfo> ci)
{
lock (CellInfoPool)
CellInfoPool.Enqueue(ci);
}
CellLayer<CellInfo> InitCellInfo()
{
CellLayer<CellInfo> result = null;
var map = self.World.Map;
var mapSize = new Size(map.MapSize.X, map.MapSize.Y);
// HACK: Uses a static cache so that double-ended searches (which have two PathSearch instances)
// can implicitly share data. The PathFinder should allocate the CellInfo array and pass it
// explicitly to the things that need to share it.
while (CellInfoPool.Count > 0)
{
var cellInfo = GetFromPool();
if (cellInfo.Size != mapSize || cellInfo.Shape != map.TileShape)
{
Log.Write("debug", "Discarding old pooled CellInfo of wrong size.");
continue;
}
result = cellInfo;
break;
}
if (result == null)
result = new CellLayer<CellInfo>(map);
lock (DefaultCellInfoLayerSync)
{
if (defaultCellInfoLayer == null ||
defaultCellInfoLayer.Size != mapSize ||
defaultCellInfoLayer.Shape != map.TileShape)
{
defaultCellInfoLayer = new CellLayer<CellInfo>(map);
for (var v = 0; v < mapSize.Height; v++)
for (var u = 0; u < mapSize.Width; u++)
defaultCellInfoLayer[u, v] = new CellInfo(int.MaxValue, Map.MapToCell(map.TileShape, new CPos(u, v)), false);
}
result.CopyValuesFrom(defaultCellInfoLayer);
}
return result;
}
bool disposed;
public void Dispose()
{
if (disposed)
return;
disposed = true;
PutBackIntoPool(CellInfo);
CellInfo = null;
GC.SuppressFinalize(this);
}
~PathSearch() { Dispose(); }
}
}