At the end of L-turns, actors often end up with an internal facing not 100% matching the direction of the next cell on their path.
As a result, if they haven't reached their destination yet, Move queues a quick Turn as ChildActivity, which previously was not considered as IsMoving.
However, we don't want those mini-turns to interrupt move animations, so we now consider them a move as well. Additionally, to avoid any issues, we make these mini-turns non-interruptible, just like the MovePart activities already are.
While the first tick of the MoveFirstHalf child would run at the parent Move tick (see 2nd-to-last line in Move.Tick), this was not the case for Turn.
As a result, this Move tick would get wasted if a Turn was necessary, which at least contibuted to that visible jerk at the end of each L-turn (actors usually don't have the exact facing needed for the next move at the end of an L-turn).
Add GrantConditionOn*Layer traits
This allows to
- drop some booleans from Locomotor
- drop a good part of the subterranean- and jumpjet-specific code/hacks from Mobile
- grant more than 1 condition per layer type (via multiple traits)
- easily add more traits of this kind for other layers
The previous implementation:
- Was failing to dispose of pooled layers.
- Was using a finalizer to allow undisposed layers to be reused.
This means all pooled layers are kept alive indefinitely until the map changes. If the finalizer is slow for any reason then the pathfiinder will allocate new layers when the pool runs out. Since these new layers are eventually stuffed back into the pool when the finalizer does run, this can theoretically leak unbounded memory until the pool goes out of scope. In practice it would leak tens of megabytes.
The new implementation ensures layers are disposed and pooled correctly to allow proper memory reuse. It also introduces some safeguards against memory leaks:
- A cap is set on the number of pooled layers. If more concurrent layers are needed than this, then the excess layers will not be pooled but instead be allowed to be garbage collected.
- No finalizer. An implementation that fails to call dispose simply allows the layer to be garbage collected instead.
If a class is caching the TraitsImplementing enumerable, instead cache the results of enumerating it to an array. The avoids having to enumerate the sequence each time it is needed.
Introduced also a small Unit test project to prove it.
- Separated caching capabilities from PathFinder class to increase cohesion and maintainability.
Refactored the pathfinding algorithm by extracting methods based on responsibilities like
calculating costs and reordering functions. These changes should provide a in average a small increase in
pathfinding performance and maintainability.
- Optimized the pathfinder algorithm to reuse calculations like the
MovementCost and heuristics.
- Introduced base classes, IPathSearch and IPriorityQueue interfaces,
and restructured code to ease readability and testability
- Renamed the PathFinder related classes to more appropriate names. Made the
traits rely on the interface IPathfinder instead of concrete PathFinder
implementation.
- Massive performance improvements
- Solved error with harvesters' Heuristic
- Updated the heuristic to ease redability and adjustability. D can be
adjusted to offer best paths by decreasing and more performance by
increasing it
- Refactored the CellLayer<CellInfo> creation in its own Singleton class
- Extracted the graph abstraction onto an IGraph interface, making the
Pathfinder agnostic to the definition of world and terrain. This
abstraction can help in the future to be able to cache graphs for similar
classes and their costs, speeding up the pathfinder and being able to feed
the A* algorithm with different types of graphs like Hierarchical graphs