Replaces the existing bi-directional search between points used by the pathfinder with a guided hierarchical search. The old search was a standard A* search with a heuristic of advancing in straight line towards the target. This heuristic performs well if a mostly direct path to the target exists, it performs poorly it the path has to navigate around blockages in the terrain. The hierarchical path finder maintains a simplified, abstract graph. When a path search is performed it uses this abstract graph to inform the heuristic. Instead of moving blindly towards the target, it will instead steer around major obstacles, almost as if it had been provided a map which ensures it can move in roughly the right direction. This allows it to explore less of the area overall, improving performance.
When a path needs to steer around terrain on the map, the hierarchical path finder is able to greatly improve on the previous performance. When a path is able to proceed in a straight line, no performance benefit will be seen. If the path needs to steer around actors on the map instead of terrain (e.g. trees, buildings, units) then the same poor pathfinding performance as before will be observed.
Some path searches, using PathSearch, were created directly at the callsite rather than using the pathfinder trait. This means some searches did not not benefit from the performance checks done in the pathfinder trait. It also means the pathfinder trait was not responsible for all pathing done in the game. Fix this with the following changes:
- Create a sensible shape for the IPathFinder interface and promote it to a trait interface, allowing theoretical replacements of the implementation. Ensure none of the concrete classes in OpenRA.Mods.Common.Pathfinder are exposed in the interface to ensure this is possible.
- Update the PathFinder class to implement the interface, and update several callsites manually running pathfinding code to instead call the IPathFinder interface.
- Overall, this allows any implementation of the IPathFinder interface to intercept and control all path searching performed by the game. Previously some searches would not have used it, and no alternate implementations were possible as the existing implementation was hardcoded into the interface shape.
Additionally:
- Move the responsibility of finding paths on completed path searches from pathfinder to path search, which is a more sensible location.
- Clean up the pathfinder pre-search optimizations.
- When a path search is being performed the path search will not attempt route to inaccessible cells, so domain index checks to avoid inaccessible cells in the search predicate are redundant and can be removed.
- DomainIndex is a required world trait, so we don't need to use TraitOrDefault and therefore can avoid dealing with the null case.
The existing APIs surfaces for pathfinding are in a wonky shape. We rearrange various responsibilities to better locations and simplify some abstractions that aren't providing value.
- IPathSearch, BasePathSearch and PathSearch are combined into only PathSearch. Its role is now to run a search space over a graph, maintaining the open queue and evaluating the provided heuristic function. The builder-like methods (WithHeuristic, Reverse, FromPoint, etc) are removed in favour of optional parameters in static creation methods. This removes confusion between the builder-aspect and the search function itself. It also becomes responsible for applying the heuristic weight to the heuristic. This fixes an issue where an externally provided heuristic ignored the weighting adjustment, as previously the weight was baked into the default heuristic only.
- Reduce the IGraph interface to the concepts of nodes and edges. Make it non-generic as it is specifically for pathfinding, and rename to IPathGraph accordingly. This is sufficient for a PathSearch to perform a search over any given IGraph. The various customization options are concrete properties of PathGraph only.
- PathFinder does not need to deal with disposal of the search/graph, that is the caller's responsibility.
- Remove CustomBlock from PathGraph as it was unused.
- Remove FindUnitPathToRange as it was unused.
- Use PathFinder.NoPath as the single helper to represent no/empty paths.